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The flow mixer is described by use of the unidimensional stochastic model based on the earlier 
published general approach. It is demonstrated that on basis of the proposed model two indi
vidual models result which are most frequently used in chemical engineering for description 
of mixers and reactors: the dispersion model and model of the cascade of ideal mixers. On the 
basis of the model proposed it is also possible to derive the usual relation for calculation of 
the reactor conversion at macroflow. 

In our recent study! a unidimensional stochastic model was proposed which describes 
the random motion of the indicating particle superimposed with respect to the also 
randomly moving small liquid volume in the mixer. On basis of several simplification 
assumptions it was demonstrated that on basis of this model the diffusion Kol
mogorov's equation for spreading of scalar quantity (temperature or concentration) 
in turbulent regime can be derived. This approach was applied to the rather 
special case: homogenisation of miscible liquids in batch equipment equipped wiJ;h 
a mechanical stirrer2. Here an attempt has been made to propose a procedure how 
to apply the proposed model for the flow system. 

THEORETICAL 

General Relations 

Let us assume the infinitely long mixer schematically given in Fig. 1 and let us choose 
the oriented unidimensional system with the axis x parallel with the axial axis of the 

--~-. FIG. 1 

Motion of Indicating Particle in Mixer 
x=o x=l 

Part LII in the series Study on Mixing; Part LI: This Journal 44, 700 (1979). 
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Stochastic Model of the Nonideal Flow Mixer 1095 

mixer. In the moment t = 0 we locate in the point x = 0 the indicating particle 
which tracks the motion of the liquid flowing through the mixer. 

It was demonstrated 1 , 2 that - in the case when it is possible to neglect the super
imposed component of motion which corre~ponds to molecular diffusion - it is 
possible to describe the random motion of the particle by use of the system of sto
chastic differential equations3 

dV(t) = g[X(t), Vet) , t] dt + h[X(t), Vet), t] dW(t) (1) 

dX(t) = Vet) dt . (2) 

In these equations is X denoting the projection of position and V the projection 
of the velocity of particle to the chosen axis x while both these quantities are random 
functions of time, Wis the Wiener process4

. The first right hand side term is character
izing the intensity of deterministic and the second one of random forces acting 
on the particle. 

Similarly as in the case of the batch system2 we will make several additional as
sumptions concerning these forces and the assumption on stationary flow in the sys
tem: 

Al. A non-random force in the direction of the axis x acts on the particle, which 
is neither a function of position, nor of velocity and time. A2. A non-random force 
acts on the particle, which is directly proportional to the particle velocity Vet) and 
is oriented against the direction of motion of this particle. A3. A force of non-random 
character acts on the particle, which is a linear function of particle velocity and acts 
against the direction of its motion. A4. The particle velocity is in each moment 
stationary random function of time. 

Discussion of assumptions: The active force defined sub Al is causing the motion 
of the particle in the direction of the axis x and it is possible to imagine that it is the 
result of pressure difference on both ends of the mixer or by the stirrer motion etc. 
The force sub A2 can be considered to be the force of laminar friction and the force 
defined sub A3 is the cause of turbulent resistance to the particle motion (see!). 
The made assumption is representing the fact that the intensity of turbulence and 
velocity of particle motion and thus also the flow velocity increases. The assumption 
A4 represents the fact that the particle begins to move in the liquid whose flow is 
(quasi) stationary i.e. it steadied from the moment t = O. 

At the given assumptions Eq. (1) can be written in the form 

dV(t) = [IX - /3 Vet)] dt - (y'2)[Y + (j Vet)] dW(t) , (3) 

where IX, /3, y, (j are coefficients which are constant at the given conditions of the 
operation of the mixer (i.e. the volumetric liquid flow rate through the equipment, 
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1096 Kudrna: 

speed of mixer rotation, geometrical arrangement etc.). The coefficients 0(, [3, (j 

posseses only the non-negative values. 

Eq. (3) is the linear homogeneous equation; its solution can be written in the inte
gral form (see Appendix) 

0( - 2y(j 
V(t) = -- + exp [ -([3 + (j2) t - ()2)(j W(t)J . 

[3 + 2(j2 

. {V(O) - 0( - 2y(j _ (J2(a(j + y[3))f' exp [ +([3 + (j2) S + (J2)(j W(s)J dW(S)} . 
[3 + 2(j2 [3 + 2(j2 ° 

(4) 

By substitution of this expression into Eq. (2) and by its integration the explicite 
expression for X(t) can be formally obtained. 

To Eqs (2) and (3) corresponds the Kolmogorov's diffusion equationS 

of' of' a 02 

- + v - + - [(0( - [3v) f'J - - [(y + (jV)2 f'J = 0, (5) at ox ov ov2 

where f'(x, v; t I xo, va) is the transitive probability density for functions X(t) and 
V(t) at t > 0 at the condition that in the moment t = 0 these functions have got 
the values Xo and Vo (ref.!). By giving the corresponding initial and boundary 
conditions is uniquely determined the solution of Eq. (5) and by the procedure pro
posed earlier! it would be possible to obtain the dependence of the expected virue 
of the scalar quantity (concentration or temperature) on time and position (i.e. 
on local coordinate x) in the mixer. But perhaps it is not possible to find the analytical 
solution of Eq. (5) in a general form; this problem would have to be solved numerically. 

But it is possible to find the explicite expression for the distribution function of the 
particle velocity or its probability density; as results from Eq. (3) it will neither be 
a function of position and according to the assumption A4 nor a function of time. 
To relation (3) corresponds the Kolmogorov's equationS which is here given with 
respect to the same assumption for the stationary case in the form 

i. {(O( - [3v) Iv - i. [(y + (jv)1 IvJ} = 0, 
dv dv 

(6) 

whose solution is the expression (see Appendix) 

f(v)=-exp --- -- -_. 1 ( e) ( e )b 1 · 
v r(b) v + 9 v + 9 v + 9 , 

[v ~ -gJ, (7) 
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b = (13 + t)2)/c5 2
; e = (ac5 + yf3)/c53

; g = y/c5 

and r(.) is the gamma-function. Velocity distribution can be thus described by the 
gamma-distribution with the reciprocal argument. 

The fact that distribution (7) depends only on the argument venables to write 
with respect to the assumption A4 both the initial conditions of solution of relation (5) 
and formally the own solution in the form 

fxv(x , v; t) = f:g<Xl f~: f'( x, v; t I xo, VO) c5(xO) flvO) dxo dvo = 

= fX lv(x ; t I v) fv(v) . (8) 

In Eq. (8) is 15(.) denoting the Dirac function, fX lv the conditioned probability density 
for the particle position X(t) in the case when its velocity is just equal to v. Relations 
(7) and (8) make possible to find explicitely the moments of solution fxv(x, v; t} 
(see Appendix) which are uniquely determining the looked for distribution. 

Here only the expressions for the first two moments are given which are needed 
for the next considerations: The expected value of the velocity v as the stationary 
random function and its dispersion hvv are given by the relations 

v = E[V{t)] = a/f3, (9} 

hvv = ~ - v2 = (f3/a + y/c5)2 15
2 /(13 - 15 2

) • [13 > 15 2
] • 

Similarly there holds for the expected value x of the particle position and for its 
dispersion hxx for the case that the particle in the moment t = 0 is just located in the 
point x = 0 

x = vt, (1O) 

The covariance between the position and velocity can be expressed by the relation 

hxv = Xv - xv = [1 - exp (-f3t)] hvv/f3. (ll) 

Relations for Usual Chemical Engineering Models 

We will now demonstrate that two models most frequently used in chemical engineer
ing for description of flow systems - the dispersion model and cascade model of ideal 
mixers (at macroflow) - see e.g.6 

- are the individual cases of the model here 
proposed and the corresponding equations result at certain simplifications of rela-
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tions given in the last paragraph. We choose in total four simplifications and we 
observe the consequences each of them at first separately: 

Simplification I: 

Simplification II: 

Simplification A: 

Simplification B: 

b = 0 

=0 

t ~ 1/13 

~ 1113 

1. In this case the stochastic differential Eq. (3) takes the form 

dV(t) = [a - 13 V(t)] dt - (J2)y dW(t) , (12) 

into which can now be for V(t) substituted from Eq. (2) w that we obtain the equation 
in total differentials 

dV(t) = IXdt - f3dX(t) - (J2)ydW(t) , (12a) 

which can be easily integrated so that the explicite expression for position of the 
particle as a random function of time is obtained 

x(t) = (alf3)t - (llf3)[V(t) - V(O)] - (J2)(ylf3) W(t) . (13) 

It is possible to demonstrate (see Appendix) that by wlution of Eq. (12) with regard, 
to Eq. (4) - at stationary conditions is obtained the expression 

V(t) - V(O) = - (J2)Y {exp [ - f3(t - s)] d W(s) • (14) 

The corresponding Kolmogorov's equation (5) can be at this simplification solved 
explicitely 7 and the relation for the conditional probability density can be obtained 
from relation (8) 

lim iXllx; t I v) = {ax [2rc(1 - r2)]1/2} -1. 
0-40 

Also solution of Eq. (6) is given by the limiting case of distribution (7) 

(16) 
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and after substitution from Eqs (15) and (16) into the right hand side of relation (8) 
and by integration of this relation with respect to v we obtain also explicitely the 
limiting distribution fx for position of the particle 

lim fix; t) = [ax J(21t)]-1 exp [ - (x - vtY/(2a;)] . (17) 
0-0 

The quantities V(t) and X(t) thus have normal distribution whose characteristics 
can be found as corresponding limits of moments from Eqs (9) to (11) 

a~ = lim 2hyy = 2'/1/3 , 
0-0 

a; = lim 2hxx = [PI - 1 + exp (- /3t)] a;//32 , (18) 
0-0 

r2 = lim ~ = [1 - exp ( - /3t)J2 
0-0 hxxhyy /3t - 1 + exp ( - /3t) 

Equation (17) is as has been demonstrated earlier l directly proportional to the 
expected value of scalar quantity (concentration or temperature) as the function 
of position and time in the flow mixer. 

II. The parameter g in Eq. (7) is in this case equal to zero, which means that 
values of velocity can be only non-negative. This fact makes possible to describe by 
use of Eq. (8) also the "closed" flow mixers without special boundary conditions in the 
point x = 0 and x = 1 (see Fig. 1) while in other cases (i.e. for y > 0) the fundamental 
solution (relation (8)) can be used only for the case of the "open" i.e. infinitely long 
mixer. (The problem of boundary conditions will not be considered here). 

For the case which is here considered (i .e. y = 0) the residence time T of the 
particle in the mixer i.e. the time in which the particle passes from the point x = 0 
to the point x = 1 can be obviously easily defined. It is obviously the random variable 
determined as the upper integration limit at integration of relation (2) 

1 = tT V(t)dt (19) 

with the probability density 

ilt) = lim (lIM) p{t ~ T < I + LlI} . (20) 
41-0 

A. By introducing the simplification A, i.e. verification of validity of general rela
tions characterizing the "behaviour" of the particle in short time intervals from 
their appearance in the mixer leads to the considerable simplification of integration 
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of Eq. (2) 

X(t) = I V(s) ds = V(e) I ds ~ V(O) t; [0 < e < t ~ liP]. (21) 

The position of the particle is thus - though only approximately - directly propor
tional to time. In this case it is possible to find the distribution X(t) by the method 
of randomization of parameterS so that we integrate at first Eq. (2a) as an ordinary 
one (deterministic) differential equation at constant velocity v 

dx(t)/dt = v; [x(O) = 0] (2a) 

and then we consider the velocity as the random parameter with distribution of the 
random variable V(O). To relation (2a) corresponds a simple partial differential 
first order equation 

of' of' -+v-=O, 
ot ox 

(5a) 

whose solution is the Dirac function so that Eq. (8) can be easily integrated at simpli
fication A with regard to Eq. (7) with the result 

= J(x - vt) - exp - -- -- -- = f"" 1 ( e) ( e )b dv 
_II r(b) v + g v + g v + g 

1 ( et) ( et )b 
= r(b) exp - x + gt x + gt x + gt 

[0 < t ~ liP] , (22) 

which is the probability density of the phenomena that the particle will just appear 
in the interval [x, x + dx) in the moment t not far from the moment of particle 
entrance into the mixer. 

Note: From Eq. (10) it is obvious that the expected value of function X(t) is pro
portional to time and the variance is at the considered condition proportional to the 
second power of time 

x = vt 
(23a) 
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Stochastic Model of the Nonideal Flow Mixer 1101 

B. Simplification of B is not supplying in otherwise general case a more detailed 
information in the analytical form; the corresponding analytical solution for pro
bability density in Eq. (8) was not found. It is only obvious (see relation (10)) that 
the growth of variance in this case is linear with time 

x = tit 

(23b) 

Now we will consider some combinations of individual simplifications: lB. We 
introduce the simplification I and simplification B. From Eq. (13) it is obvious that 
the random motion of the particle (quantity X(t)) or from there resulting random 
changes of temperature or concentration 1 is conditioned by random changes 
of velocity (see the second right hand side term in Eq. (13)) and directly by the 
"randomisation" factor - stochastic Wiener process which is included in the third 
right hand side term of the same equation. We will demonstrate that it is possible 
to neglect the effect of random velocity changes with regard to random pulsations 
of the Wiener process with the greater probability the longer time t has elapsed 
from the beginning of the studied operation . The mentioned second term of Eq. (13) 
can be expressed by the stochastic integral from Eq. (14) and the third term is the 
integration of only the stochastic differential. We can compare both these integrals 
with respect to probability that their values exceed some chosen limit y (J 2t) (see 
Appendix). 

p {II U2)y exp [-fJ(t - s)] dW(s) 1 > y J(2t)} ~ l/(fJt) (24a) 

p {It (J 2)y dW(S)j > y J (2t)} ~ 1. (24b) 

It is possible to say that the third right hand side term in Eq. (13) roughly increases 
with the square root of time while the probability of occurrence of the equaly large 
velocity pulsation can be at long time intervals neglected. Thus at the considered 
simplifications the second term in Eq. (13) can be neglected together formally with the 
left hand side of Eq. (12a) so that the relation holds 

dX(t) = (a/fJ) dt - U2)(Y/fJ) dW(t) . [t ~ l/fJ] (25) 

But the given differentials do not correctly correspond to the definition of stochastic 
differential9

. 

To relation (25) corresponds the Kolmogorov's equation 
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(26) 

which is the usual equation of the unidimensional diffusion. The coefficient (yjPY 
has the significance of the coefficient of axial dispersion or of turbulent diffusivity 
as the Wiener process in Eq. (25) is in the frame of the general mode11 the reason 
of turbulent pulsations. (Molecular diffusion as is stated in the introduction of this 
paper is in all these considerations neglected). 

IIA. We introduce the simplification II together with the simplification A. For this 
case it is easily possible to find the distribution function as the corresponding prob
ability density of residence time Tin the mixer, defined by Eq. (19). The usual proce
dure10 is prescribed by equation 

fl(t) = - - fxCx; t) dx , d II 
dt 0 

(27) 

but it requires formulation of the boundary conditions at the ends of the interval 
[0, IJ. In our case a more simple procedure may be adopted as the velocity - i.e. the 
function Vet) is non-negative and thus it is not necessary to take the boundary condi
tions into consideration. Moreover, from Eqs (19) and (21) results the relation 

T= IjV(O); [0 < t ~ ljP] , (28) 

which is the relation between the residence time and particle velocity and is thus· 
a monotonous function. In this case it is possible on basis of the known probability 
density of velocity to find easily the probability density of residence timell 

fl t) = fv{ljt) I dvjdtl· [t = Ijv] . (29) 

In Eq. (7) we thus use g = 0 and we also define parameter x: 

a == ej(lb) = rx/[(P + (j2) I] (30) 

so that we obtain after performing the operations in Eq. (29) the looked for probabil
ity density 

xb flt) = - exp (-xbt) (Xbt)b-l . 
reb) 

(31) 

It is possible to find easily the first two moments of this distribution 
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Stochastic Model of the Nonideal Flow Mixer 1103 

= E[T] = I/x, (32) 

htt = r - "(2 = 1/(x2 b) . 

It is immediately obvious that in the case when b is a natural number Eq. (31) 
takes the form of a known relation for distribution of residence times in the cascade 
of ideal mixers. In the case b = I the equation becomes the relation for the ideal 
mixer. 

Remark: Simultaneous application of simplification I and II leads to the relation 
for plug flow as e.g. in Eq. (3) the term with the "randomising" Wiener process 
disappears. Relations (2) and (3) are ordinary differential equations and the cor
responding probability density is the Dirac's function 

f'(x; t) = b(x - ta/p). (33) 

DISCUSSION 

Relations derived in the last part of this study demonstrate the fact that application 
of stochastic differential equations has a wide application in description of chemical 
engineering operations. A similar solution of the problem has been attempted 
by King12 .l3 who considered the flow mixer as a linear system with the stochastic 
transfer function with the Gauss and gamma-perturbations. The physical significance 
of relations which he obtained was to a certain degree depreciated by a faulty use 
of parameter A e.g. in Eq. (Ia) in his second paper13 which the autor wrongly con
sidered to be the random residence time although it was from the same equation 
obvious that it had the dimension of reciprocal time. 

Note: In mathematic operations is King applying the Stratonovich's method of cal
culation; in our study we use the procedure according to Ito which we consider 
to be more adequate as concerns the physical significance of description; the dif
ference between the both calculation methods has been already explained14 in the 
chemical engineering literature. 

The model we have proposed enables on the contrary an obvious physical explana
tion also from the point of view of spreading the scalar quantity (concentration 
or temperature) in liquid whose particles (i.e. small volumes) are moving with random 
velocities Vet). The model was from the general point of view discussed both in our 
recent studyl and in a concrete form in this paper in the discussion of individual as
sumptions. The statement that the random force described by the last term in Eq. (3) 
is the cause of turbulent pulsations is beside others also supported by the fact that 
the limiting values of dispersions in short and long time intervals (second from Eqs 
(23a) and (23b)) are in agreement with the relations given in the general theory 
of turbulence15. 
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In Eq. (3) there are given the random forces (actually the intensity of impulse 
of these forces is concerned): One of them is proportional to velocity - 0 V(t) -
and may be considered to be the cause of turbulence which originated · by liquid 
flow through the mixer i.e. by interaction of flowing liquid with its walls and solid 
particles. In the diffusion Eq. (5) is the corresponding term equal to the second power 
of velocity which is in l1greement with the familiar relation for the hydraulic resistance 
in turbulent flow. The second term - y dW(t) - is independent either of position 
or velocity which is due to moving mechanical parts e.g. rotary mixers, pulsing units 
etc. This mechanical action is then the cause of the velocity pulsation which is oriented 
against the main stream. 

The model here proposed makes also possible to limit the region of validity of the 
models usually used in chemical engineering e.g. their discussion from more general 
positions: 

a) Dispersion model (Eq. (26)) holds only for longer time intervals (or longer 
mixers) i.e. for cases where there are already no transient effect. Thus it is not correct 
from the point of view of our concept to try to describe the ideal mixer by use of the 
dispersion model (see e.g. 16

) i.e. to try to express by this model the behaviour of the 
system also in short time intervals. 

Note: But it would be formally possible to correct the "usual" equation of uni
dimensional diffusion for all time intervals t > 0: it is possible to demonstrate that 
Eq. (17) with respect to Eq. (18) is the solution of diffusion equation in which is the 
dispersion coefficient a function of time 

aJ. + v aJ. _ ~ [1 _ exp(-/1t)] a
2
J. = o. 

at ax 2/1 ax2 
(34) 

b) Model oj the "cascade oj ideal mixers" (relation (31)) makes possible on the 
contrary the description of transfer phenomena but it is not suitable for description 
of longer operations. Eq. (31) is the gamma-distribution which holds for each value b 
greater of equal to one while its both parameters have from the point of view of the 
proposed model an obvious physical significance: the parameter x, introduced 
by Eq. (30) is as results from the first Eq. (32) the reciprocal mean residence time 
of the particle in the mixer and is obviously the greater, the greater is the active force 
characterized by the coefficient rx. The laminar and turbulent resistance to the motion 
(expressed here by the coefficients /1 and (j) on the contrary decrease the value of this 
parameter, i.e. they prolong the mean residence time. The parameter b defined 
by Eq. (7) represents the ratio of the total resistance against the particle motion 
to the turbulent resistance. It is obvious that in the case the laminar resistance can be 
neglected (i.e. if /1 ~ 02

) the coefficient b converges to one (i.e. the mixer is approach
ing by its character the ideal mixer) in the reverse case (i.e. for plug flow) it increases 
to infinity. 
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Thus according to this concept - the gamma distribution of the residence time 
in the mixer with parameter b which becomes noninteger values is not of the purely 
mathematic or empirical model as is quoted by Wen and Fan17 • A physical inter
pretation of the gamma distribution has been already attempted from other posi
tions in our recent study18 where also some experiments were mentioned confirming 
its suitability at description of residence time distributions. There was also determined 
the effect of experimental conditions on parameters of the model. 

c) Character of flow in the mixer. We demonstrate, from the point of view of cal
culation of conversion in the chemical reactor, that the resulting probability density 
(Eq. (31)) corresponds to the description of the flow mixer at macroflow. We again 
use the method of randomization of the parameter. 

We write Eq. (5a) for a system of particles l and assume validity of the law of large 
numbers i.e. we interchange the probability density for the occurrence of one particle 
by the concentration c of these particles. We moreover assume that the number 
of these particles is changing due to the (isothermal) chemical reaction: 

oc oe - + v - + eP(e) = 0, ot ox 
(35) 

where eP(e) is the reaction rate. 

In the case the second term in Eq. (35) is equal to zero the equation describes 
the time dependence of the reaction rate in the ideally mixed batch reactor. On the 
contrary if the first term is equal to zero the plug flow reactor is concerned where 
the change of concentration with position is here formally equal to the change 
of concentration with time with the exceptio'n of the scale of the independent variable 
which is given by the reciprocal value of velocity. Thus we can approximately inter
change the requirement of very short time interval for randomisation of the velocity, 
by the requirement of very short length of the mixer t = l/v ~ liP. 

Solution of Eq. (35) for plug flow is the relation 

f
C

! de 
- == Fh) = -lfv, 

Co eP(e) 
(36) 

where e l is the concentration at the outlet and eo at the inlet of reactor. From the 
left hand side of Eq. (36) is explicitely expressed Cl and the relation for conversion Y 
can be written l9 

Y = 1 - cdeo = 1 - F- l
( - l/v)/eo , (37) 

where F- 1(.) is the inversion function to the integral in Eq. (36). 
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Let us now assume that the velocity v is the random parameter with the probability 
density epv(v) situated on the positive part of the axis (i.e. for v ~ 0). It is obvious 
that the probability density, defined by Eq. (7) for values of parameter 9 equal to zero 
is a special case of distribution epv(v). Now we randomize the parameter v in Eq. (37) 
and obtain equation for the average conversion 

(38) 

As at the given conditions Eq. (28) holds, it is possible to interchange the distribu
tion of velocities by the distribution of residence times according to the procedure 
suggested by Eq. (29) and finally the relation for conversion is obtained 

r = 1 - fa) F- 1
( -t) epv(lJt) I~l dt = I - fa) c(t) epl(t) dt, (39) 

o dt · 0 Co 

where c(t) is with respect to the assumption following Eq. (35), the concentration 
in the batch reactor and epl(t) the probability density of residence times in the flow 
reactor which is uniquelly determined by the function epv(v). The shape of function 
epl(t) can be easily determined by the empirical method of measurement of response 
to the <5-impulse. 

It is possible to calculate the conversion of reactor by use of Eq. (39) for macro
flOW19• With respect to function ft(t) which is the special case of function <PtCt), 
Eq. (31) describes the residence time distribution in the reactor at macroflow~l(js 
possible to prove easily (see Appendix) that for first and second order reactions, the 
familiar relations for calculation of conversion in the ideal mixer19 are obtained 

(40) . 

where ei (.) denotes the integral exponential, k 1 , k2 reaction rate constants and 
parameter w is given by the relation 

d) Relation between the mean velocity and mean residence time of the pqrticie 
in the mixer. From Eq. (28) results that the residence time of particles is obviously, 
at the given conditions, indirectly proportional to its velocity. But as is obvious 
from Eqs (30), (32) and (9) this statement does not hold for mean values of these 
quantities between which the relation holds 
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1 = Ilv + t?lja. 

Thus the question arises which of these quantities can be expressed by the macro
scopic characteristic i.e. by the volumetric flow rate Ji of liquid through the systems. 

From simplification II and simplification B results that the mixer must be fuIly 
filled by the considered stream-pipes while through each of them liquid flows with 
a constant velocity v, accurately in the given stream-pipe the value of velocity can vary 
in the interval [v, v + dv). The infinitesimal volumetric flow rate through such stream
-pipe can be expressed by the relation 

dJi(v) = Ji qJv(v) dv , (41) 

while the probability density qJv(v) is defined by the statement preceding Eq. (38). 
Evidently from the equation of continuity can be inferred: 

dJi(v) = v dS(v) , (42) 

where dS is the infinitesimal cross-sectional area of the corresponding stream-pipe. 
Both right hand sides of Eqs (41) and (42) are equal. After separation of variables and 
integration the relation is obtained 

f: Ulv) qJv(v) dv = SJV. (43) 

Physical significance of the procedure becomes more obvious when integration 
is substituted by summation i.e. if a system of n particles with the same mass is con
sidered. Then the "linear" calculation of the mean velocity 

n n 

V = I Vi = I IJt [t = const.] (44) 
i=l i=l 

determines the velocity of the inertia centre (centre of gravity) of the system of particles 
in the given moment t, while the symbol Ii determines the length of trajectory of the 
i-th particle. The "reciprocal" calculation which is approximating the integral 
in Eq. (43) is given by the relation 

(ljv) = i Ijvi = t tJI = ijl [1 = const.] , (45) 
i=l i=l 

where ti is the residence time of the i-th particle in the mixer with the constant length I. 
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The liquid flow rate through the mixer is thus directly proportional to the mean 
residence time of liquid in the mixer. 

Note: It is worth mentioning that the simple triangular distribution with the prob
ability density 

CPJv) = mv, [0 ~ v ~ Vmax] , (46) 

where m is the constant and vma. the upper limit of velocity, leads, at the use of the 
proposed procedure, to the familiar parabolic velocity profils in the pipe with the 
circular cross section at laminar flow 2o 

V/Vmax =1 - rl/R2, [0 ~ Q ~ R] (47) 

where R is the radius of the pipe (see Appendix). 
Finally it is possible to conclude that the model here proposed makes possible 

to judge from a more general point of view the "unidimensional" models most 
. frequently used for description of reactors and mixers. It is thus possible to assume 
that they enable description of some situations in which the proposed models do fail. 
Of course it includes one parameter more and in the general case it is not supplying 
the analytical solution. 

APPENDIX 

a) Solution of the stochastic differential Eq. (3) is given in Iiterature21 for a more 
general case when the coefficients ex, p, y, b are functions of time. In our case is this 
solution simplified to the form 

V(t) = exp [ -(p + b2
) t - (J2)b Wet)] {V(O) + (ex - 2yb) . 

. I exp [(p + b2
) S + (J2)b W(s)] ds -

- (J2)y I exp [(p + b2
) S + (J2)b W(s)] dW(S)}. (D-I) 

According to the rules of calculus with stochastic differentials22 there holds for the 
first integral in Eq. (D-I) 

(p + 2b 2
) I exp [(p + b2

) S + (J2)b W(s)] ds = 

= exp [(p + b2
) t + (J2)b Wet)] - 1 - (J2)b I exp . 
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. [(13 + (j2) s + (J2)(j W(s)] dW(s). (D-2) 

After substitution from Eq. (D-2) into Eq. (D-I) and algebraic arrangements we 
obtain Eq. (4) given earlier in this paper, which reduces for (j = 0 to the form 

Vet) = rx/p + exp (-PI) [V(O) - rx/P - (J2)'/ I exp (ps) dW(s)]. 

(D-3) 

To be able to find the relation for the stationary form of function Vet) we move the 
time axis to the left for an interval 't', which will increase to infinity. We obtain 

lim [Vet + 't') - V('t')] = lim {exp [-p(t + 't')] . [V(O) - rx/P -
t-oo T-oo 

- (J2)y I+T exp (ps) d W(s)] - exp (- P't') • 

. [V(O) - rx/p - (J2)y J: exp (ps) dW(s)]} . (D-4) 

The functions exp ( - p!) are converging to zero so that the effect of initial conditions 
disappears. If we move again the origin of the time axis into the moment 't' = 0 
we obtain 

Vet) - V(O) = -(J2)y exp (-pt) I exp (ps) dW(s) , [steady state] (D-5) 

which after arrangement leads to Eq. (14). 

The integral in (D-5) is now compared with the integral 

(J2)y Wet) = I (J2)y dW(s) , (D-6) 

which is the last right hand side term of Eq. (13). In general the relation23 holds 

where f is the subintegral function and p, q are suitably selected terms. Into this 
equation we at first substitute from (D-5) while we select p = y (J2t) so that it holds 
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P {II ()2)y exp [-f3(t - s)] dW(s)1 > y )(2t)} ~ 

~ P{2y2 f>xp [-2f3(t - s)] ds > q} + q/(2lt) = 

Kudrna: 

= P{(l/f3) [1 - exp (-2f3t)] > q} + q/(2y2t) . (D-8) 

It is obvious that the probability on the right hand side of relation (D-8) is equal 
to zero if we choose the quantity q = 2y2/f3 which leads to the relation (24a) . Similarly, 
we obtain after substitution from Eq. (D-6) into (D-7) 

If we put q = 2y 2 t the probability on the right hand side of Eq. (D-9) is equal to zero 
so that we obtain Eq. (24b). 

b) Solution corresponding to the Kolmogorov's equation and corresponding 
moments. At the assumption that the relation holds, 

Jim vfv(v) = lim v2 dfv = 0 
v-oo v-+oo dv 

is the first integral in Eq. (6) equal to zero so that the relation is obtained 

d 
(ex - f3v) fv = - [(y + bv)2 fv] . 

dv 

If we substitute u = v + y/b we obtain the solution 

fv(u) = K exp (- e/u) l/ub + 1 
, 

(D-IO) 

(D-ll) 

where the parameters of solution b, e were defined by Eq. (7). The integration constant 
K is determined from the condition 

The probability density fl.) is obviously defined only for nonnegative values of the 
quantity u. After reverse substitution for u the relation (7) is obtained. 

It is also possible to prove that the n-th central moment of the considered distribu-
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tion is given by the relation 

foo (v - iit fv(v) dv = (a/(3 + y/b)D .t [( _I)' (b - lY -1 reb - n + i)], [b > n] 
_g reb) 1-0 

(D-I2) 

where ii is the first moment of the same distribution, which is given in the first Eq. (9). 
An arbitrary moment of order m + n of fxv(x, v; t) from Eq. (8) is obtained with 

respect to Eq. (5) 

- xmvDfxv dv dx + xmvn + 1 ~ dx dx + a f+OO f+oo f+oo f+oo af 
at -00 -g -00 _g ax 

+ xmvD 
- [(a - (3v) fxv] dv dx -f

+OO f+oo a 
-00 -g av 

(D-13) 

At integration we assume that all primitive functions do converge to zero at the 
increase of the corresponding arguments to infinity. For second moments we then 
obtain the relations 

VZ = (a/(3 + y/b)2 (3/((3 - b2), 

diJx/dt - ii2 
- ax + f3iiX = 0 , 

dXi _ 2vx = o. 
dt 

(D-14) 

The last two equations are obtained at the initial conditions iiX(O) = ~O) = 0, as 
the position of the particle in the initial moment is independent of its velocity. 

c) Calculation of conversion by randomisation of the parameter. In Eq. (36) 
we put <p(c) = k1c and we obtain the familiar relation 

(D-I5) 

From Eq. (D-I5) and from relation (7) at 9 = 0 we substitute into Eq. (38) for cal
culation of conversion 

foo (kl) 1 (e)(e)b-l e 
Y = 1 - 0 exp - -;;- . reb) exp -;; ~ dv. (D-I6) 
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After introduction of the integration variable t = llv and integration the relation 
is obtained 

_ (e)b (Xb)b 
Y = 1 - e + kJI = 1 - xb + kJ ' (D-17) 

with regard to Eq. (30). For ideal mixer we put b = 1 and from the first of Eqs (32) 
results the first relation (40) . 
Id we use <p(c) = k 2c2

, we obtain the familiar relation 

(D-18) 

By randomisation in the same way and with b = 1 i.e. when we consider only the 
ideal mixer we obtain 

(D-19) 

By introduction of a new integration variable y = 1 + k 2 cO llv the relation is ob-
~~ . 

(D-20) 

If we use w = e/(k2 col) we obtain the right hand side of Eq. (40). 

d) Velocity profile in the pipe of circular cross-section. We evaluate at first the 
constant m in Eq. (46) 

f
V ... 8 X 

1 = m 0 v dv = mv!.x/2 

and substitute into Eq. (41) 

dV(v) = V(2vlv!ax) dv . (D-21) 

At the assumption of cylindrical symmetry in the annulus with the infinitesimal area 
dS = 2rre de the liquid flows with the same velocity. If we substitute this area 
into Eq. (42) and the used expression is put equal to the right hand side of relation 
(D-21) we obtain . 

V(2vlv!ax) dv = -2rrev de . (D-22) 
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The negative sign denotes that the velocity decreases with increasing radius. After 
separation of variables we solve this differential equation for boundary conditions 
vCR) = 0, so that we obtain 

(D-23) 

In Eq. (D-23) we put v(O) = Vmax and we express the volumetric flow rate V. SO we 
obtain Eq. (47). 

LIST OF SYMBOLS 

b parameter in Eq. (7) characterizing the ratio of total resistance with respect 
to the turbulent resistance to motion of the particle 
concentration, mol m - 3 

e parameter in Eq. (7), ms- 1 

F- 1 inversion function 
f probability density 
g parameter in Eq. (7) - minimum velocity, ms- 1 

g( ) function characterizing a nonrandom force, ms - 2 

h second central distribution moment 
h( ) function characterizing a random force, ms - 3/2 

k reaction rate constant 
length of mixer, m 

n number of particles in the system 
R radius of pipe, m 

correlation coefficient 
S cross sectional area of the mixer, m2 

T residence time in the mixer, s 
t time, s 
V random velocity, ms- 1 

velocity, ms- 1 

V volumetric flow rate, m3 S-1 

W Wiener process, SI/2 

X random position of particles, m 
x local (axial) coordinate, m 
Y degree of conversion 
ex parameter in Eq. (3) characterizing the active force, ms- 2 

f3 parameter in Eq. (3), characterizing the force of laminar friction S-1 

parameter in Eq. (3), characterizing the turbulence due to mechanical motion. 
ms- 3/2 , 

(j parameter in Eq. (3) characterizing turbulence due to liquid flow, s -1/
2 
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cP chemical reaction rate, mol m - 3 S - 1 

cp probability density for non-negative values 
" parameter in Eq. (31) reciprocal value of mean residence time S - l 

(J2 variance of normal distribution 
(l radial coordinate, m 
ii mean (expected) value of quantity u 

Subscripts 

related to the i-th element 
related to time 

v related to velocity 
x related to position 
o related to the inlet of the mixer 
I related to the outlet of the mixer 

related to the first order reaction 
2 related to the second order reaction 

The Used Special Functions 

ei (y) = exp ( - yu) -f
ro du 

integral exponential 
1 U 

r(y) = f: exp (-u) uy
-

1 du gamma function 

J(y) = lim ---exp --1 (y2) 
0' ... 0 .J(2n)(J 2(J2 

Dirac function 
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